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Abstract. In order to robotically prune a dormant fruit tree, the branches must be identified in three-
dimensional space.  Furthermore, the branches need to be measured in order to determine which 
branches should be pruned.  Both the identification and measurement of branches can be 
accomplished by generating a three-dimensional reconstruction of the tree, and by making 
measurements on the reconstruction. In this work, we use a computer vision-based method to 
generate the three-dimensional reconstruction.  Images of the tree are acquired in a laboratory 
setting, and then a shape from silhouette (SFS) method of our own design is used to reconstruct the 
shape of the object.  Although we use the SFS method for leafless apple trees, this method is 
appropriate for many complex objects. We present an overview of our method of SFS and 
experimental results in a laboratory setting. 
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1 Introduction 
 
Pruning dormant fruit trees is a necessary task for the health of trees and quality of fruit. By 
dormant pruning, we mean pruning that is done while the tree in its dormancy phase, during the 
winter.  As a result, the leaves are not present. Dormant pruning requires a highly skilled 
workforce during one of the most uncomfortable times of year to be outside, the winter.  
Currently, automatic cutters are available.  Even so, workers must repeatedly perform the same 
motions with their arms over their heads, again and again, in order to accomplish pruning.  The 
popularity of high-density training systems for many specialty crops, particularly apple, have led 
to uniform orchards with a sparse branching structure.  If the arrangement and diameters of 
branches could be determined then with some assistance from horticulturalists it may be 
possible to design a decision system for pruning.    
 
For instance, in apple there is currently a simple rule called the fifty percent rule. Trees have a 
central leader branch, and then secondary branches emanating from the central leader.  During 
pruning, the secondary branches are removed at the point where they join the central leader. 
The rule states that secondary branches whose diameter is larger than fifty percent than the 
diameter of the central leader branch are pruned.   
 
In order to get the information needed for the fifty percent rule, or any other rule, for that matter, 
a three-dimensional reconstruction of the tree is needed. By three-dimensional reconstruction, 
we mean that data about the tree is acquired by sensors, and then this data is merged in some 
way to generate the position and shape of the tree in three-dimensional space, R3. A three-
dimensional reconstruction is needed for the robotic vision system, not only to make decisions 
about what needs to be done to the object, but also to avoid colliding with it.  In this article, we 
present some preliminary steps towards robotic pruning by presenting a method for the three-
dimensional reconstruction of fruit trees in the laboratory. Even though pruning is our eventual 
goal, the method is general and can be applied to a range of objects and applications. 
 
Our preliminary vision system for the reconstruction of complex objects such as dormant apple 
trees uses a computer vision method called shape from silhouette (SFS).  Images are acquired 
of the object, and the regions in images corresponding to the target object are segmented from 
non-object regions, generating silhouettes.  For each image, the silhouette is backprojected into 
R3.  The intersection of all of the backprojected silhouettes produces an approximate 
reconstruction of the object called the visual hull.  The visual hull will be discussed in more detail 
in sections 3 and 4, but we mention now that for objects that satisfy certain shape constraints, 
the visual hull can be an accurate reconstruction method.  
 
The organization of this article is as follows.  First we present some characteristics of leafless 
apple trees, and explain why the classical methods for three-dimensional reconstruction fail, in 
section 2.  We present the recent literature concerning SFS in section 3.  We explain the 
methodology of our shape from silhouette method, including pertinent definitions as well as 
constraints that must be satisfied by the object and cameras in section 4.  Section 5 shows the 
experimental results of our algorithm when applied to leafless apple trees in a laboratory 
environment.  Finally, in section 6 we present a conclusion about the work and also future 
research directions. 
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2 Characteristics of leafless apple trees and their images 
 
In this section, we explain some of the characteristics of the shape and images of leafless apple 
trees.  See Fig. 1 for some images of the trees used in these experiments. 
 
First of all, the shape of the tree is complex; in images of the tree, there are numerous self 
crossings. If we look at a tree and shift our viewpoint slightly, the image of the tree changes 
considerably, unlike many objects where close views are similar. Secondly, the local 
appearance of one section of a branch is not significantly different from the local appearance of 
a section of a different branch.  The shape of the tree is complex and is characterized by convex 
and saddle-shaped regions, but few to no concavities. 
  
The classical approach of three-dimensional construction as presented in (Hartley and 
Zisserman 2004) is that feature points are first extracted from the images.  Then, 
correspondences of feature points are computed between images; corresponding points are 
triangulated to form a point cloud in R3.  The points can then be meshed or subjected to further 
processing.   
 
When an object has the characteristics we mentioned here, the classical approach fails.  First of 
all, established methods for feature point detection such as the Harris corner operator or even 
newer methods such as SIFT (Lowe 1999) discover feature points on the boundary of the object 
and the background.  When the view changes slightly, frequently there are no feature points 
corresponding to the same three-dimensional position as the feature points in the first image.  
Clearly, we must look for another approach. 
 
While the uniformity of the tree surfaces is a detrimental characteristic if we use the classical 
approach, this characteristic is actually an asset if we consider using the silhouettes of the 
object to reconstruct the shape of the tree.  A background subtraction method, or some other 
method, extracts the object regions from the background, and then a shape from silhouette 
method reconstructs the three-dimensional shape.  In the next section, we present a survey of 
recent literature in this field, called shape from silhouette, or SFS. 
 

3 Literature Review 
 
In this section we will present a survey of recent literature on the reconstruction of complex 
objects using shape from silhouette.  First we give some definitions that are frequently used in 
the shape from silhouette literature in 3.1.  Theoretical work on SFS is presented in 3.2. Then 
we consider the two competing approaches for SFS, volumetric and surfaces approaches, in 3.3 
and 3.4, respectively. 
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Figure 1. Images of the leafless apple tree used to compute the visual hull. 

3.1 Definitions 

Some terminology common to many shape from silhouette methods will be briefly presented 
here. 

 

Consider an object M in R3, such as the temple figurine in Fig. 2.1  If a camera is pointing at M, 
the silhouette is the projection of M to the image plane.  A standard practice in SFS is that the 
pixels corresponding to the silhouette are labeled white as in Fig. 3. If we backproject the pixels 
in the silhouette (residing in the image plane), a set of rays into R3 called the viewing cone is 
generated.  Note that every ray in the viewing cone intersects or is tangent to M. 

 

The rays in the viewing cone that are tangent to M touch M at a set of points; this set is called 
the contour generator, or rim.  Projecting the rim to the image plane generates the occluding 
contour, as in Fig. 4. The relationship between the rims and occluding contour is also illustrated 
in Fig. 5. 

                                                 
1 Images of the temple dataset throughout this document are used with permission from the Middlebury 
College multi-view dataset, (Seitz et al 2006). 
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Figure 2. Input image of a temple figurine. 
 

  
Figure 3. The silhouette of the input image consists of the white regions. 
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Figure 4. The occluding contour is the boundary of the silhouette and non-silhouette regions; 

shown in white. 

 

 
Figure 5. An illustration of the relationship between the occluding contour and rims.  The image 
plane is indicated in the figure; the occluding contour is indicated in white on the image plane.  
Some viewing cone rays are shown; they touch the occluding contour and the target object (in 

blue) at the points labeled in red.  The rim is the shaded part of the target object, and represents 
all regions where the viewing cone rays are tangent to the object. 
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3.2 The theory of shape from silhouette 

Koenderink (1984) and Richards et al (1987) characterized the shape that can be inferred from 
silhouettes.  They both use an interpretation rule whereby the maximal three-dimensional shape 
that could have generated the silhouettes is inferred.  Also, Koenderink and van Doorn (1976) 
show that when the interpretation rule is used, saddle-shaped and locally cylindrical three-
dimensional surfaces can be inferred from convex and saddle-shaped occluding contours, 
respectively.  Given a convex occluding contour, convex or concave surfaces could be inferred.  
This ambiguity is resolved by the interpretation rule, which specifies that the maximal possible 
surface is inferred.  Consequently, if the occluding contour is convex, we infer a convex surface.  
The implication of these results is that concave three-dimensional surfaces are never inferred.  

 

Laurentini (1994) discussed the properties of the three-dimensional shape that is inferred given 
an infinite number of silhouettes.  This shape, the visual hull, has several properties that are 
relevant to SFS.  The first is that the true object is guaranteed to lie within the visual hull; if we 
combine this property with the results given in the previous paragraph, we can see that given an 
infinite number of cameras and an object with no concavities, the visual hull is a very accurate 
reconstruction of the object.  The second property is that the visual hull is silhouette consistent. 
What this means is that when the shape is projected to every image, the projected shape 
exactly matches the silhouettes.  While the visual hull VH is technically defined for an infinite 
number of cameras, Slabaugh et al. (2001) note that for a finite number of cameras the maximal 
silhouette consistent shape is the inferred visual hull.   

 

The distinction between the visual hull, which is the maximal silhouette-consistent shape in the 
limit of an infinite number of cameras, and the inferred visual hull, which is the maximal 
silhouette-consistent shape for a finite set of cameras, is rarely made explicit in the literature.  In 
this work we use the term visual hull for both entities, and only make a distinction when referring 
to the visual hull for an infinite number of cameras.  

 

From a practical standpoint, the visual hull can be computed by backprojecting silhouettes in R3, 
and then intersecting the backprojected silhouettes from all cameras.  The next two sections will 
explain two different approaches for performing the backprojection. 

 

3.2 Volumetric approaches 
 

The first attempts to solve the SFS problem were volumetric methods. Volumetric methods 
divide up the region of the object into discrete units called voxels.  The voxels are labeled either 
on or off, representing whether a voxel is part of the reconstruction of the object or not. The 
shape of the voxels, the method of division, and the method of labeling differ by method. More 
detail concerning volumetric methods can be found in the surveys of the subject, (Dyer, 2001) 
and (Slabaugh et al., 2001), and in milestones in the field such as (Martin and Aggarwal, 1983,  
Chien and Aggarwal, 1986,  Potmesil, 1987, Szeliski, 1993).   

 

We mention here that if the object is very thin, such as in the case of leafless apple trees, 
volumetric methods get bogged down with the division of voxels into smaller and smaller units 
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along the boundary of the object.  In addition, the resolution of the reconstruction is determined 
by how small voxels are divided.  Since our object is very thin, we do not consider volumetric 
methods, instead concentrating on surface approaches. 

3.3 Surface-based approaches 

Surface-based approaches typically exploit the properties associated with the occluding contour 
in order to characterize the surface of the visual hull. 

 

Early works sought to approximate the depth of points on the surface and to approximate 
surface curvature through either differential geometry or epipolar constraints, such as in the 
following works of (Cipolla and Blake, 1990, Cipolla and Blake, 1992, Vaillant and Faugeras, 
1992, Szeliski and Weiss, 1993, Szeliski and Weiss, 1998, Boyer and Berger, 1997).  The 
camera positions must be very close together in order to accurately reconstruct the surface, and 
a key assumption is that the object be smooth.  The occluding contours were approximated by 
continuous (smooth) functions. These early works were not able to reconstruct the entire 
surface, but instead generated approximations of the surface at some local points.   

 

The next series of works dealt with the computation of the exact visual hull, which Lazebnik et al 
(2007) defined as the visual hull in terms of its intrinsic properties:  the vertices, edges, and 
faces of the visual hull for a given set of cameras.  All of these intrinsic properties can be 
determined via an intersection of the viewing cones from all cameras, a three-dimensional 
problem. If the method performs the intersection in R3, the method is said to be world-based, 
while if it performs the intersection by exploiting epipolar constraints between images, it is 
image-based.  Another important aspect of the exact visual hull is that occluding contours were 
interpreted as piecewise linear polygons, obviating the need for approximation of contours as 
continuous functions. 

 

Matusik et al (2000, 2001) used an image-based algorithm to perform the intersections of 
viewing cones, and generated a boundary representation of the visual hull.  The authors used 
epipolar constraints on occluding contours and an efficient edge-binning method. 

 

Others represented the exact visual hull with a polyhedral graph (Boyer and Franco, 2003, 
Lazebnik et al., 2001, Lazebnik and Ponce, 2005, Lazebnik et al., 2007, Franco and Boyer, 
2003, Franco and Boyer, 2009, Franco 2005).  These works sought to determine the vertices, 
edges, and faces of the graph.  The visual hull polyhedron then can be displayed by walking 
half-edges in a specific orientation until all edges have been walked twice (once in each 
direction).   

 

Of those using the polyhedral graph representation, Boyer and Franco (2003) produced a hybrid 
exact visual hull method.  The first stage computed polyhedral graph vertices, while the second 
stage approximated the edges (and therefore, the faces of the visual hull) by performing a 
Delaunay triangulation of the vertices.  In other words, the vertices were exact but edges and 
faces were approximated. 
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Lazebnik et al in (Lazebnik et al., 2001, Lazebnik and Ponce, 2005, Lazebnik et al., 2007) used 
an image-based method based on projective oriented geometry in order to determine the visual 
hull of smooth objects.  The cameras need only be weakly calibrated, and the method uses 
incremental computation.  However, there are some problems related to numerical robustness; 
specifically, the localization of an intersection point, which is a vertex of the graph where three 
or more viewing cone patches intersect in R3.   

 

The work of Franco and Boyer in (Franco and Boyer 2003 and 2009, Franco 2005) on their 
method ‘Exact Polyhedral Visual Hull,’ or EPVH, is the first surface-based method to allow 
target objects to lie outside of the field of view of some cameras.  EPVH is an image-based, 
batch method that uses epipolar constraints in order to compute the exact visual hull. While very 
efficient, a problem is the generation of some polyhedral graph edges called `hanging edges,' 
where one endpoint and the direction of the edge is known, but the other endpoint is unknown.  
A search is initiated from the known endpoint in the direction of the unknown one, but 
occasionally this search process can fail because of numerical stability issues, as shown in Liu 
et at (2007).   

 

The only world-based method is that of Baumgart (1974).  The occluding contours were 
approximated by polygons, and the projection of the polygons were intersected, forming the 
visual hull.  Using the terminology of the introduction, this method is characterized as world-
based, but the result is approximate because of the occluding contour approximation.   
   

4 A new method for shape from silhouette 
We desire that a SFS method for our application have the following characteristics.  The first is 
that the method allow incremental, divide and conquer, or parallel implementation. The styles of 
implementation listed here allows the visual hull to be computed with a subset of cameras; then, 
more cameras can be added as needed to refine the result. One of the drawbacks of the image-
based method is that there is no mechanism whereby the visual hull computed with one subset 
of cameras and the visual hull computed with another subset of cameras can be merged to 
produce the visual hull for all cameras.  The second desired characteristic is that the method 
allow the object to be at least partially outside of the field of view of some cameras.  Most SFS 
methods assume that the object is within the field of view of all cameras, but since the tree is 
such a large and complex object, it is not possible to capture the level of detail required about 
branching points and contain the tree in every image.  We consider Franco's EPVH method 
(Franco and Boyer, 2009) to be one of the most promising methods from the literature review.   
However, EPVH allowed the second characteristic, but did not allow the first.  Consequently, we 
design our own method for SFS by intersecting backprojected silhouettes in R3. 

 

Recall that in section 2 we observed that the tree contains few to no concavities.  In section 3.2, 
we discussed how SFS more closely approximates the true shape of the object if that object has 
no concavities.  As a result, we propose SFS as a promising approach for reconstructing the 
three-dimensional shape of the trees.  In this section, we give an overview of our SFS method 
and its application to the reconstruction of leafless apple trees.   
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First, we make explicit the assumptions under which we are working in section 4.1.  Then, we 
show how to undistort images for SFS in section 4.2, and convert the occluding contours to 
planar facets in 4.3.  Finally, we discuss the intersection of backprojected silhouettes in section 
4.4. 

4.1 Assumptions 

Most works on SFS assume that the target object is within the field of view of all cameras; we 
call this the total visibility assumption.  However, in our application, the total visibility assumption 
is not valid, because the tree is quite large and complex.  Consequently, the object is only 
partially visible by each camera. 

 

In contrast to the total visibility assumption for the tree reconstruction application, we assume 
that any region S which is unseen by any camera is occupied.  First of all, this assumption 
allows for those situations when the total visibility assumption is not valid, as in our application. 
Since we eventually are considering a robot application, another advantage of our assumption is 
that it is safer to assume that regions are occupied if there is no evidence for the contrary. 
Otherwise, if we had assumed that a region S was unoccupied by following the total visibility 
assumption, then the robot arm could be moved through such a region, potentially damaging 
cameras, robot, and the tree.  Our method can be adapted to situations where the total visibility 
assumption is used or not used; we alert the reader in the text to the necessary adjustments to 
the method depending on the situation. 

 

We also assume that the camera calibration parameters, internal (including radial distortion) and 
external, are known for every camera. In addition, we assume that an accurate segmentation of 
the object from the background in the image is available.  Fig. 6 shows a raw image and then its 
segmented version. 

 

4.2 Radial distortion correction 

As mentioned previously, we assume that the radial distortion parameters are known.  We do 
not explain undistortion in detail in this section, but instead explain how to make adjustments to 
the undistortion process such that the visibility assumption is incorporated and information on 
the corners of the image is not lost.  In order to see how our method is different, we must first 
mention the classical method of undistortion.  Usually, the image is undistorted into an image of 
the same size.  See Fig. 7 to see how the information in the corners of the image is lost.  We 
wish to undistort the image such that we preserve the silhouette information in all regions of the 
image. 

 

An overview of the process is as follows. First, we offset the original image by some amount of 
pixels into a larger image.  If the total visibility assumption is in effect, we fill the region not 
occupied by the original image with the color black; if not, we fill with the color white.  We 
transform the internal camera calibration matrix K  to a new matrix K ′ .  Then, we use the radial 
distortion parameters and the internal camera calibration matrix K ′  to undistort the larger 
image. This process is demonstrated in Fig. 8.  We will now discuss each component of the 
process.    
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Let the number of offset (in pixels) in the x  and y  direction be called xoff  and yoff ; in our 
experiments, we set both offsets to 100 pixels.  The original image’s upper left hand corner is 
placed at location ( xoff , yoff ) in the larger image.  As mentioned previously, we fill the border 
with black if the total visibility assumption is in effect, and fill the border with white if not. We 
then need to adjust the internal camera calibration matrix to account for the offset. We use the 
terminology of Hartley and Zisserman (2009), chapter 6: Camera Models, to represent the 
internal camera calibration matrix K  of the original image: 
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where xα  and yα are the focal lengths of the camera in terms of pixel dimensions for the two 

axes. The term s  is the skew parameter.  The terms 0x  and 0y  are the coordinates of the 
principal point in pixels. We adjust K  in order to produce a new matrix, K ′ , for the larger 
image: 
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After K ′  has been computed, we undistort the larger image with the original radial distortion 
parameters and the internal calibration matrix K ′ . 
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(a) An image of the apple tree 

 
(b) The segmented image. 

Figure 6. An example of the original image and the segmented image. 
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Figure 7.  The region that is not overlaid with green is the result of using the classical 

undistortion method.  Notice that the regions on the edges and corners, which are overlaid with 
green, would have been lost. 

4. 3 Contour extraction and conversion of contours to planar facets 

Next, we extract the edges2 of the undistorted images as sequences of line segments 
represented as vertices and edges.  Then, we convert one edge of the occluding contour into a 
planar facet as follows.  Given that an edge has endpoints 1e  and 2e  in world space, we 
backproject both endpoints a certain distance in front of the image plane to get points 1ep  and 

2ep .  From these four points, we generate a planar facet represented by vertices 1e ,  2e , 2ep , 
and 1ep  and surface normal nr .  The planar facet's surface normal nr , when projected to the 
image plane, points away from the white regions in the image, which represent the object.  We 
create planar facets for all contour edges in the image; this is the viewing cone for each image.   

 

The planar facet generation process is shown in Fig. 9  when the occluding contour is 
rectangular. Another example, of the temple dataset, is shown in Fig. 10. Fig. 11 shows the 
viewing cones for five cameras of the temple dataset, where each camera's viewing cone has a 
unique color.  For all of the examples thus far, the total visibility assumption is used.  Fig. 12 
shows a viewing cone when the total visibility assumption is not in effect. 

 

 

                                                 
2 We mean edges to be the boundary between white and black regions in the image.   
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(a) The distorted image is offset by xoff  and yoff ; the border is filled with white. 

 
(b) The undistorted image.. 

Figure 8. Demonstration of the undistortion process. 
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(a)  The planar facet for one edge of the occluding contour. 

 
(b) The planar facets for all edges of the occluding contour. 

Figure 9. Construction of planar facets for a rectangular silhouette.  The darker blue (subfigure 
a) represents the back side of the facet, the brighter blue (subfigure b) represents the side of the 

facet represents the front side, where the surface normal points away from the facet. 
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Figure 10. The viewing cone for one camera in the temple dataset; the total visibility assumption 

is in effect. 

 

 

 
 

 
Figure 11. Viewing cones of five cameras in the temple dataset, each viewing cone is a different 

color.  The total visibility assumption is in effect. 
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4.4 Intersection of viewing cones 

Now that the viewing cones for each image have been constructed, it remains to intersect the 
viewing cones. We have created an algorithm for the intersection of two objects represented by 
planar facets.  We do not go into the details of the algorithm in this article, but plan to discuss 
the algorithm in a future publication.  However, we will show how the algorithm for the 
intersection of two objects is employed to intersect all of the viewing cones. 

 

We employ a divide and conquer scheme to intersect all of the viewing cones.  Let there be N  
images, and for simplicity in this explanation, assume that N  is divisible by two. Then we divide 
the set of images in half; each set has 2/N  images in it. We keep dividing until we have sets 
that contain two viewing cones.  Then we intersect the viewing cones in each of the sets.  The 
result is 2/N   three-dimensional objects, where each object is the intersection of two viewing 
cones; in other words, each object is the visual hull computed on the basis of only two cameras.  
Then we divide the set of 2/N  objects until each set contains two objects.  We intersect the 
two objects, and continue this process until only one object remains, which represents the visual 
hull for all N  images.  An example of a typical result when the total visibility assumption is in 
effect is shown in Fig. 13; the viewing cones that were intersected are shown in Fig. 11.  Since 
the distance between cameras in those figures is small, the reconstruction is not very accurate.  
Compare those results with a more evenly distributed set of cameras in Fig. 14. 

 
 

 
Figure 12. The viewing cone for one camera when the total visibility assumption is not in effect. 
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Figure 13. Visual hull computed by intersecting the viewing cones from Fig. 11; two views of the 

same scene. 
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Figure 14. The visual hull of the temple figurine with 20 exactly calibrated cameras; two views 

and detail.  The orange pyramids represent cameras. 
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5 Experimental Results 
 

In this section we present some results of our SFS method as applied to leafless apple trees.  
We use a robot (Kawasaki UX-120, Kawasaki Robotics, Wixam, Michigan) and three color 
cameras (DragonFly, Point Grey Research, British Columbia, Canada).  See Fig. 15 for an 
illustration of the experimental setup. In order to get camera calibration information, we at first 
relied on the hand-eye calibration of the robot.  However, we found that the robot’s hand-eye 
calibration was accurate for very small displacements, but not for larger displacements.  
Consequently, we gained the camera calibration by moving the robot to the same nine positions 
in two different passes.  We will explain the process in detail here. During the first pass, the tree 
is not in the scene.  The robot is moved to nine known positions; the cameras are calibrated at 
those nine positions by the typical chessboard calibration pattern.  Then, the tree is inserted into 
the scene and the nine positions are visited again for a second pass; we use the camera 
calibration information from the first pass as the camera calibration for the second pass.  Even 
though the robot is calibrated, there is enough error in the robot encoder that the calibration of 
the cameras has some slight error.  As has become obvious in the course of this paper, camera 
calibration error degrades the accuracy of the visual hull.  For segmentation, we manually 
segment the images at this time. 

 

In Fig. 16, we show the results of our method on the leafless apple tree.  Notice that it appears 
that there is a wall surrounding the object; the walls represent the boundary between regions 
that are seen by at least one camera and the region which no camera can see, and are a 
consequence of not using the total visibility assumption.  The use of more images and wide 
baselines between cameras would eventually remove the extraneous portions, or what we have 
been calling walls. In general, the results are encouraging in the sense that the visual hull 
closely resembles the original object.   

 

   
Figure 15. An illustration the leafless apple tree in the workspace and the robot with three 

cameras. 
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Figure 16. The visual hull of the tree object given 10 cameras that have some calibration error. 
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6 Discussion and Conclusions 
In this paper, we have shown that SFS is a feasible technique for the three-dimensional 
reconstruction of complex agricultural objects, such as leafless apple trees. Our work for the 
future is to design an experimental setup that has exact camera calibration, unlike our robotic 
data acquisition setup.  In addition, we wish to explore methods by which the segmentation 
process can be automated, with the knowledge that an automated segmentation process will 
have some error.  Consequently, our future work will also explore means by which erroneous 
silhouettes can be corrected or discarded from the visual hull computation.  Furthermore, we 
wish to improve the speed of the algorithm. 
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